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NOMENCLATURE

A,B Disk identity

C Actual volume concentration of disks

C 0  Maximum possible disk concentration

D Disk diameter

d Thickness of disks

ER Rotational energy/ moment of inertia

I Moment of inertia

i,jkt Unit Cartesian vectors

m Disk's mass

N Areal number density of disks

N,P Unit vectors

p Linear number density of disks

R Ratio of the mean velocity to the fluctuating velocity

s Mean interparticle separation distance

Tr Fluctuational energy in rotational motion

Tt Fluctuational energy in translational motion

UC  Tangential velocity of the contact point

u Mean component of translational velocity

v? , VU Fluctuating component of translational velocity

V,VA,BAV Total instantaneous translational velocity

VAW VAP, Velority components

Vev bp

W Work done by shear forces

X Variable

X1 ,X 2  Coordinate axes

* Denotes post-collision variables

a Angle berten V and N

al,(2  Integration limits for a

Ratio of the square of the radius of gyration to the square of
the radius (Q for a disk)

AE Average energy loss per collision

AM1  Average momentum transfer per collision in the x, direction

A M2  Average momentum transfer per collision in the X 2 direction

E Coefficient of restitution

Coefficient of friction

t Boldface variables indicate vector values.
v
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Ps Density of disks

0 Angle defining the point of collision with the flow direction

9 Mean component of angular velocity

w AMW 8 Instantaneous angular velocity

WO' Fluctuating component of angular velocity

PDissipation rate from inelastic and frictional collisions

T2 1.T2 2  Stresses
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CONSTITUTIVE RELATIONS FOR A PLANAR,
SIMPLE SHEAR FLOW OF ROUGH DISKS

Hayley H. Shen and Mark A. Hopkins

INTRODUCTION

The flow of a granular material is an important transport process in industry
as well as in nature. Examples of granular flows are grain flows in chutes and hop-
pers, slurry flows in pipelines, avalanches, and the transport of sediment and broken
ice floes in rivers and oceans. At present, engineers who work with such flows
depend largely upon empirical or semi-empirical information. Recent developments
in the theories describing the consti.ative relationships for rapidly sheared granular
flows have revealed many insights into the properties of these flows. These develop-
ments may soon lead to a sound theoretical basis for the engineering design of
granular flow systems as well as provide a better understanding of many geophys-
ical phenomena.

However, there is a major defect in the existing theories that are capable
of analytically describing stresses in rapidly sheared granular flows: these theories
neglect the rotational motion of particles. From a laboratory study of gravity
flow of rough disks in a frictionless chute with rough walls,* we have observed
particle rotation in the shear field and found it to be an important component in
the interactions between disks. A sequence of pictures taken from the laboratory
study illustrates this phenomenon (Fig. 1).

Recent computer simulations of simple shear flows of rough disks in a channel
with rough walls also showed the importance of the particle rotation h, the rheologi-
cal behavior of fast granular flows. Campbell (1982) and Walton (1984) found that
the rotation of the disks could contain energy as high as 20% of the total energy
of the disks' motion.

There are a few studies that have considered the rotation of particles (Kanatani
1979, Shahinpoor and Siah 1981). In these studies, the rotation is assumed to be
an independent kinematic variable unrelated to its generating mechanisms, which
include the material properties and the gradient of the translational velocity field.
As a result, only very preliminary, qualitative expressions for the constitutive rela-
tionships are obtained, which are of limited engineering interest.

Recently, Lun and Savage (in press) analyzed the effect of particle rotation
on the constitutive relations for a granular flow of spheres. They adopted the kinetic
theory approach and analyzed the complete dynamics of colliding spheres. They
quantified the rotational motlon by using the tangential component of the relative
velocity and the surface property of the colliding spheres. The surface property
of the colliding spheres was assumed to be a material constant B, -1 I B 1,
such that in the tangential direction of collision, the relative velocity before and
after the collision has a ratio equal to B. The value B = I corresponds to a smooth

* Part of an ongoing experimental study at Clarkson University under National
Science Foundation Grant No. CME-8011601.
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Figure 1. Time lapse image of a gravity-driven disk flow (At = 0.04 sec).

surface with no friction, 8 = 0 corresponds to infinite friction and 8 = -l corres-
ponds to a complete reversal of tangential velocity. As Lun and Savage (in press)
stated, this parameter 8, instead of being a constant, should be a function of the
frictional coefficient, the normal impulsive force during collision, and the tan-
gential inelasticity at the contact surface.

In this report, we present an analysis that quantifies the constitutive rela-
tions for a planar, simple shear flow of rough disks. This type of flow may be used
to model the motion of floating broken ice in northern rivers and arctic seas;
therefore the result is of practical interest. Also, there are computer-simulated
data (Campbell 1982) for this type of flow that can be used for direct compari-
son.

The rotational motion of the shearing disks is computed from a statistical
average of a random collision process in the granular material. These collisions
are inelastic and frictional. It is assumed that all colliding disks separate with
no relative tangential velocity. This assumption enables us to directly compare
our results with Campbell's data. However, this assumption would mean an in-
finite friction coefficient. Extension of this analysis to incorporate a finite fric-
tion coefficient is currently underway.

The random collision process obtains its energy from the translational mean
velocity field. These collisions produce a random motion in the flowing mater-
ial. This random motion has both translational and rotational modes. Both
modes of motion are completely determined by the imposed mean translational
velocity field and the material properties. By introducing the restitution and
frictional coefficients as independent parameters, the relative motion of collid-
ing particles in the tangential direction can be determined as a function of not
only the frictional property, but also the normal impulsive force at contact. This
approach incorporates slightly more fundamental physics than that of Lun and Savage
(in press). 2



MODELING PROCEDURE

Consider an assembly of shearing uniform disks as shown in Figure 2, where
the diameter of disks and the size of the average gap between disks are denoted
by D and s. The thickness of the disks is d, the density of the disks is p . and the
interstitial fluid is neglected. The area concentration C of the disks is related
to D and s, as shown In eq 1, through the densest possible concentration C O (Shen
1982). In this study, C 0 is assumed to be 0.906, the concentration for a hexagon-
al close packing.

C D' 2 (1)

The disks in Figure 2 have a restitution coefficient E and friction coefficient p.
In our study, p - is adopted in order to model collisions such that relative mo-
tion at the contact point will be destroyed. This assumption enables us to make
a direct comparison with existing computer-simulated data (Campbell 1982) and
it greatly simplifies the analysis.

There are four kinematic variables for each individual disk: ui, the mean
translational velocity; v', the fluctuation of linear velocity; Qk, the mean angular
velocity; and w', the fluctuation of angular velocity. Both the linear and angular
fluctuations are random variables that have a spectrum of magnitudes. However,
they will be simplified here so that the instantaneous velocities of a disk are

V = ul + V, (2a)

and

= Qk (2b)

where the two fluctuations v' and w' have constant magnitudes and random direc-
tions. The translational velocity v', which occurs in the x1 , x 2 plane, can take all
possible directions within the angle 2ir, while the rotations w' must all be directed

along the k coordinate axis. Therefore

W = ± w'k. (3)

The magnitude of the three kinematic variables v', W' and 2 are determined by the
material properties of the disks and the driving mechanism created by the shear
motion as defined by u(x2 ). Without this shearing, collisions can not be maintained

in the flow, hence there will be
no established random motion in
either the translational or the
rotational sense.

U(X2 ) The mean angular velocity

0 can be obtained through the

0 9 following analysis. Consider two
colliding disks as shown in Figure

x, 3. Since fluctuations have zero
d net effect on the averaged rota-

I tion, these two disks can be as-
sumed to move with the mean

D velocities as shown in the figure.

Figure 2. Simple shear flow of uniform disks. The relative motion of the two
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points on the surfaces of two disks at
A contact is

dx Uc = Q -- + D xL sin'e + S (4)

ax C 2 dx2 2

e Whenever Uc is not zero, a frictional

B X force acts to retard the disks' relative
"".,..flmotion at the contact point. Since the

mean linear velocity is maintained by
Figure 3. Colliding disks moving with the shearing motion, the retardation
mean velocities, contributes to readjusting their angu-

lar velocity only. Eventually, as steady
state is reached, Uc must vanish in the

average sense. Since

1 1
I f- T sin2 OdE)

the average of eq 4 yields

Uc = SD+'IDdu 0 (5)2 dX2

which implies

I1 du _k (6)2 dx 2

This same result has been shown by Campbell (1982) in the computer-simulated
shear flow of disks and has been derived by Lun and Savage (in press) for a sim-
pie shear flow, assuming that random motions have a Maxwellian distribution.

-*. As the derivation of Q shows, when I0 = -j(du/dx), only in the average sense is
there no relative motion between two colliding disks. Both the randomness of
contact location and relative impact velocity ascribable to disk fluctuation can
cause the angular velocity to deviate from the mean value Q2. Denoting the angu-
lar velocity fluctuation by w', this fluctuation is a consequence of random contact
location and the fluctuation of the linear velocity v'.

The angular velocity fluctuation w' is determined in the following way.
The assumption of steady, simple shear flow implies that the energy contained
in the rotational mode must be constant. Let

ER = w' (7)

ER being constant requires that, on average, the angular fluctuations before and
after collision must be the same. Consider two colliding disks A and B as shown
in Figure 4. The angular velocities of these two disks are randomly chosen as

WA = Q ± w' (8a)

w B = Q ± w'. (8b)

Let w * denote the post-collision velocity of disk B from one of the four random

Ki combinations of WA and w B. The condition that ER = w" is constant can be

4



Figure 4. Colliding disks with ye- Figure 5. Energy balance in a con-
locity fluctuations. trol area.

described as

f X(w*- Q)2da dO

ff da dO

where 0 and a are defined in Figure 4 and the integration is over all possible val-
ues of these two variables. This integration will be carried out later when ranges
for 0 and a are determined. The result of this integration determines W'.

The two kinematic variables, v' and W', determine the energetics of this
shearing assembly of disks. Consider a control area as shown in Figure 5, where
W represents the rate of work done by the shear forces and 0 represents the rate
of dissipation from inelastic and frictional collisions. In a homogeneous flow, as
the shearing reaches a steady state, W must be equal to 0. In mathematical form,
this can be written as W = 0 or

du V -
4 2 1d- 2  N- AE (10)

where T 21 is the shear force, N is the number of disks in a unit control area, s is
the mean gap size between adjacent disks, and AE is the average collisional energy
loss.

The stresses are modeled as a result of collisional momentum transfer
across control surfaces (Bagnold 1954)

T 21 = Pf EtM1 (I la)

T22 =P -3 AM2  (1 Ib)

where p is the number of disks pr unit length along the boundary of the control
area in Figure 5, and M I and AM2 are the average linear momentum transfer in
the x1 and x2 directions because of collisions.

As shown by Shen (1982),

4C (12)
p 7 D

5



and

sD , (13)

where C is the area concentration and CO is the densest area concentration that
corresponds to s = 0. Substituting eq II into eq 10 and using p/D = N (Shen 1982),
we obtain

du
du DAM, = AE (14)

The quantities E'MI and AE are functions of the material properties of the disks
and the four kinematic variables du/dx2, i9, V and w'. With W' determined in eq 9,
eq 14 is then used to solve for v'. After v' and AM1 are determined, the stresses
can then be specified using eq Ila and b.
_ In the next section, details are provided regarding the solutions for w', V,
AM1 and AM2.

DERIVATION OF STRE88ES

In this section, the four averaged quantities-angular velocity fluctuation
(V), translational momentum transfer in the x, and x 2 directions (AM1 and AM 2)
and energy loss during collisions (AE)-are first determined as functions of the
material properties and the strain rate. Equations 1 la and b are then used to
compute the shear and normal stresses.

As shown in Figure 6, disks A and B are colliding at the location specified
by 6. The coordinate system is fixed on disk B and moves with the mean velocity
of the dt!Jjust prior to collision. The relative fluctuation velocity between A
and B, V 2vis randomlydistributed between the angles a I and a 2. The four quan-
tities w', AM1, AM2 and AE are obtained by integrating over 6 and a.

The values of a 1 and a 2 are derived from a kinematic constraint on v', such
that the pre-collision velocity of A, VAB, must be within ± IT /2 of N in order for a
collision to occur (see Fig. 6). From the law of sines, it can be shown that (Shen

1982)
du -sin-(R sin2O) (15)

ID s) d% " L2 = -011 si

a W, vAB where

a 2R =D-A-- 12V . (16)

AB A ~Using the approximation sin-ix : X
(D+ ) duyields

X a 2 =-al 2T -R sin 20. (17)

The unit vectors N and P as shown in
Figure 6 are the normal and tangential

Figure 6. Definition sketch of ran- vectors at a g.ven contact point spect-
domly colliding pairs of disks. fied by 0. The components of N and P are

6



N=-cos0 i-sinej (18a)

and

P = s!nO I - cosO J. (l8b)

The velocity components of disk A prior to the collision are shown in Appen-
dix A (eq A4a and A4b) as

VAN = -D sine cose + 2v' cosa

and

VA=Ddusin 2 + vlv'sina.

Avera_ momentum transfer in the x, direction-AM1
AM1 is the average transfer of momentum in the x, direction attributable

to collisions. By use of the reference frame that moves with the mean motion
of disk B just prior to collision, the transfer of momentum from disk A to disk B
becomes equal to the post-collision momentum of disk B in the x, direction.
Therefore

AMI = m 1 (19)

where V* is the post-collision velocity of particle B. The average momentumB1-transfer AM1 resulting from all possible collisions can be expressed as
iTa 2
71D1d 5 AM 1da d

AM1 = Ps (20)

4 f da de

where a 1 and a 2 are defined in eq 15. The velocity V* can be described in terms
of the components in the N and P directions:

V N + V* P. (21)B BN Bp

The post-collision velocities of disks A and B depend on the pre-collision
velocities and the material properties characterized by the restitution coefficient
c and the friction coefficient p. In this analysis, the post-collision tangential
velocity between A and B is assumed to be zero. This is the same condition used
in Campbell's computer-simulated shear flow of disks (1982) and implies that the
friction coefficient p is infinite.

Letting p equal infinity, the velocity components of disk B after the colli-
sion are derived in Appendix A (eq A5c and A5d) as

- 1+0(-Dd-L-- sin6 cose + /2v'cosa)BN 2 dX2

V.*= D. {D usin20 + /2v'sna +-(wA+ D I
Bp 6 X2  -- w~e

7



The angular velocities WA and wB contain both mean and fluctuating com-
ponents, as defined in eq 2b. However, since the average of the fluctuating
components is zero, aM does not contain the fluctuation component of angular
velocities. Hence only the average angular velocities are necessary to describe
V. From eq 6 it is seen that

1 du
WA = WB 2 dx2

therefore, V,# can be written as

V& (-!D.!i cos20+V2-v'sina). (22)

After substituting eq 18a and b, 21 and A5c and d into eq 20 and integrat-
ing, we obtain the average momentum transfer in the x1 direction as

7 D 2 D du
AM, 4 - (- dX2 )(0.106E:+0.124). (23)

Averagemomentum transfer In the z 2 direction-AM 2
AM2 is the average transfer of momentum in the x 2 direction ascribable to

disk collisions. Again our reference frame is fixed on disk B prior to a collision.
In this reference frame, the momentum transferred is equal to the post-collision
momentum of disk B in the x 2 direction. Hence the average value of the momen-
tum transfer in the x 2 direction is

T Dd fof f2 V "jda dO
AM 2 

= Ps 1 (24)4 Jrfa2daidO

with a, and a 2 defined in eq 15.
After substituting eq 18a and b, 21 and A5c and d into eq 24 and integrat-

ing, we find that the average momentum transfer in the x 2 direction becomes
2l

TrD'd .I du ))221.
0"0 12(  x 2  + 0.287(+E)v'2} (25)

Rotational fluctuation-w'
The instantaneous angular velocity w has both a mean and a fluctuating

component as defined earlier in eq 2b. Since all rotations are in the k direction,
w may be written as

W = Q ± W'. (26)

Consider two colliding disks A and B as shown in Figure 6. Let w* denote
the post-collision angular velocity. As shown in Appendix A (eq A2e and f with

w A,= w* = (2wA-wB-2VAp/D) (27)

where wA and wB are given in eq 26. Since there are four arbitrary combina-
tions of w A and w B, the post-collision angular fluctuations are

8



wB- ±2w ± w{2 ' '- 2(+i ) (28)

where the four combinations of the ± signs are to represent the four combina-
tions of WA and wB-

From Appendix A (eq A4b)
VAp = D u2 sine+/2 v' sirm.

The average angular fluctuations as derived in eq 9 can now be obtained after
substituting eq 28 and A4b into eq 9. The integration limits are again 0 _ 0 5 7r
and a 1  5 2 1 with a I, a2 given in eq 17. This integration then gives

W,2 0125 (du )2+ 1.024 (V) 2. (29)

This derivation for W' is rather formal. A more intuitive way of deriving
W' is given in Appendix B, where a semi-Monto-Carlo method is used to generate
W'. The result, however, is identical to eq 29.

HnergyL law-A
AE is the average energy loss in an inelastic and frictional collision. As

discussed earlier (eq 7), the average rotational energy does not change in a steady
state. Hence AE may be modeled as the result of translational energy loss alone.
For a given collision, the translational energy loss in a pair of disks A and B is

AET= ] m(VA.VA-V;- V;+VB.VB-VB- V (30)

where m = Ps(7r D 2d/4) is the disk's mass.
The average translational energy loss A'ET is

2 , (VN +VP AN Ap 8 N Bp (1
AE T  "M f1 -rf(2 a d (31)

rS' dcx dO

since V8 is zero in the chosen reference frame. As derived in Appendix A (eq
A5a and b),

V= -Ddlu sine cos6 + V1v'cosa)AN 2 dx2

= (D-_u.- (5.sinO+ )+5 vlvsina
Ap 6

Substituting eq A4a and b and A5a, b, c and d into eq 31 yields the average colli-
sional energy loss

EY= ( -d- ) (0.0464-0.0261I 2) + v' 2 (0.386-0.244c2). (32)dX2

9



In a steady, homogeneous shear flow, the work done by shear forces must
equal the energy dissipation from inelastic and frictional effects of the colli-
sions between disks. This balance law has been shown to reduce to (eq 14)

D= TE
dX2

Substituting eq 23 and 32 into eq 14, we obtain the fluctuation of linear
velocity

d.Au (0.0261 +0.106E +0.0776 1/2

dX2  0.386-0.244e3

Substitution of eq 33 into eq 29 allows the flucutation of angular velocity to be-
come

odu 0.00380 +0.109e+0.128 1/2

-dx2  0.372-0.244e )

At this point all the kinematic variables have been found in terms of the
mean velocity gradient.

SHEAR AND NORMAL STRESSES

The shear and normal stresses are obtained by substituting eq 23, 25, and
33 into eq Ila and b. This yields

T21= psC (2) (D+)2( d-) 2 (0.106E+0.124)( 0.026-E2+0.106c+ 0.0076)1/2 (35a)

and

= PsC( D) (D+s)2( du )2 0.0075e +0.0350 +0.053E + 0.027

T dX2  0.386-0.244e (35b)

Removini the dimensions from the stresses by dividing eq 35a and b by
psCoD2(du/dx2)' results in the following nondimensional stresses,

T (0.106c +0.124) r0.0261e +0.106E +0.0776) 1/2 (36a)

21 [(CO/C)I/Z-1] 0.386-0.244e

and

- 1 0.0075e3 + 0.035e + 0.053E + 0.027
22 = [(C0 /C) 1l] 0.386-0.244e (36b)

COMPARISON WITH COMPUTER-SIMULATED STRESSES

To date, there have been no data obtained from physical models of shear-
ing disks that can be used to verify the theory developed above. The only ex-
perimental data currently available are from computer simulations by Campbell
(1982). The comparison between Campbell's data, eq 40a and b and the shear

10
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Figure 7. Comprison of theoretical prediction and computersimulation.

stress obtained by Shen (1982), which did not consider disk rotation, is presentedin Figure 7.

We observe that by includng disk rotations, the shear stereti duced
for the case when t = . The comparison between the computer simulation
data and eq 6a, b is, in general, satisfactory except when the disk concentra-
tion is lower than 0.3. We believe th aest lower concentrations, the momentum
transfer that is related to mass transfer increases. However, in the present
analysis, mass transfer is not considered. Since for high concentrations, mass
transfer is negligible, the correlation is closer in this regime. As the concentra-tion decreases, we therefore expect that collisional momentum transfer alone

would produce stresses that are lower than measured values.

DISCUSSION

We make two major observations on the result of this theoretical develop-
ment. The first is that the assumption of equipartition of fluctuation energy
does not apply in a dissipative granular flow. The second is that the distribution~function of the random fluctuating states does not have a significant effect on
stresses.

~Since the modeling procedure for determining the stresses Is very similar
to the molecular dynamic approach used with dense gasses, and since the equi-
partition of energy In molecular random motion Is well-known for gasses that
are in equilibrium, it has been suggested that a form of equipartition between
the rotation and translation motion of each Individual disk may exist (Kanatani
1979). It is therefore interesting to compute the ratio between fluctuation
energy in the rotational motion and that in the translational motion, which
yields

11



Tr (37)
Tt *mv'

where I is the moment of inertia for disks. Substituting eq 29 and 33-and using

l/m = D 2/8 for a disk-into eq 37 gives us

Tr 0.06-0.04E (38)
Tt = (0.3+ 1.1e + 0 .8)+0.128

which is far from being equal to unity and depends explicitly on the material
property E. The reason that the friction property does not appear in eq 38 is
that the condition of vi approaching infinity is assumed in this analysis. We ex-
pect that when a finite friction coefficient is considered, the partition ratio
would also be a function of the friction coefficient.

In this theoretical development, it is recognized that both the linear and
angular velocities of disks are random variables. However, in order to make the
mathematical manipulation manageable, serious simplifications have been made.
We assumed that the fluctuation components v' and !;' are randomly directed,
but constant in magnitude. In order to make a constant v' and w' contain the
same energy as a distributed v' and w', the constant v' and w' must be the stan-
dard deviations of the real distributions. It has been suggested that the calcu-
lated stress level could be lowered significantly by ignoring the real distributions
(which could be Maxwellian as suggested by Jenkins and Savage [1983] and Lun
et al. [1984]) and by assuming a constant magnitude for the fluctuating compo-
nents. The stresses obtained by Shen and Ackerman (1982), for example, when
analyzing the simple shear flow of uniform spheres were about three-fold lower
than those obtained by Lun et al. (1984).

However, the result of the present analysis suggests that this is not the
case, at least for a flow of disks.

This conclusion is based upon the close agreement between the present
theoretical results and the computer-simulated data of Campbell (1982), since
in the computer simulation, the distribution of fluctuation motion is inherently
included. If the velocity distribution can make a three-fold magnification of
stresses, it would also be revealed in Campbell's data. The fact that the present

theory and Campbell's data agree so well supports the validity of this simple
model.

CONCLUSIONS

Constitutive relations are developed for a granular continuum undergoing
a simple shear flow. The granular continuum flow consists of uniform disks mov-
ing in a plane. The result of the analysis may be used to model the motion of
broken ice fields on rivers and oceans.

The major contribution of this analysis is that it includes the disk rotations.
The analysis was able to relate this rotation entirely to its generating mechanisms,

namely, the linear velocity gradient. Previous studies of this problem either ig-
nored the rotation completely (e.g. Shen and Ackermann 1982, Jenkins and Sav-
age 1983), or treated rotation as an independent mode of motion, unrelated to
the linear velocity gradient (e.g., Kanatani 1979, Shahinpoor and Siah 1981).

The stresses are formulated as the rate of momentum transfer attributa-
ble to binary collisions. These collisions are inelastic and frictional. The re-
sults show explicitly the effect of material properties on the stress level. How-
ever, the constitutive laws remain in the second power form

12



T ~ U ) d 2

d2
which makes granular flow behave differently from viscous fluid flows.

The significant findings of this investigation are:
1. The stress level is decreased from previous analysis (Shen and

Ackermann 1982) when disk rotating is included.
2. There is no equipartition of rotation energy and translational

energy.
3. The distribution of random fluctuation does not have significant

effect on stresses.
Good agreement between the theoretical results and computer-simulated

data is obtained. This demonstrates the need for continued development of the
simple model used in this analysis. Future work should extend the present model
to analyze mixtures of different sizes and irregular shapes. In order to analyze
a general flow, the analysis should also be extended to include a general deforma-
tion field described by a tensor with all four components DUl/3X1 , aU1 /aX 2 ,
9u 2/au 1 , au2/u 2. The above-mentioned studies are currently underway.
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APPENDIX A: POST-COLLISION VELOCITE

Consider two disks A and B colliding with each other as shown in Figure 6.
Equations governing the collision between disks A and B were developed using
the laws of conservation of linear and angular momentum, the energy loss be-
cause of incomplete restitution, as specified by the coefficient of restitution,
and a frictional closure condition.

NY + VIN = IkN+VBM (Ala)

V + Vtp = VAp+VBp (AIb)

V A p B 1.' P( A cBA- T (A-- (ic)

V_ '1 p,
B -  w * (Ald)

We 1)/V -IQ=- C (Ale)

V4y c z~Rw* (Alf)

The above six equations are used to solve for the six post-collision varia-
bles, VA- VA, V&, V&, w *, and w*. The frictional closure condition used in this
report s that t0e reLative tangential velocity at the point of contact after the
collision is zero. This implies that friction is always great enough to destroy
the relative tangential velocity, or that friction coefficient is infinite. The six
post-collision variables are obtained from eq Ala-f as

VAN -VAN (I+E) VN (A2a)

(8+ 2) VAp+ 8 VBp -D8 (tA+ B) / 2 (A2b)

A4 2(1+0)

(15 e !~ (A20)., = (I +E) VAN + (l-E) ,,
2 2 2 B

8VAp+(8+2) VBp+D(wA+w )/ 2
V9 P = 2(1+8) (A2d)

* _ (1 +28) w A- w F-2 (IJ,,-VBP) DWA 2(1+8) W (A2e)

-W A+ (+2B) W B -2(lip-VB) / D (A2f)
CA)0  2(1+8)

8 Is the ratio of the square of the radius of gyration to the square of the
disk radius. For a uniform, circular disk, 8 = 1.

With the reference frame located at the center of disk B prior to a colli-
sion as shown in Figure 6, the pre-collision velocity of disk B is VB = 0. There-
fore, eq A2a-f can be simplified to
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(A3a)

V_ = 2 VAN

1L ( 5 DVA,- (wAt u) (A3b)

-p =WA6WB2

(1 +C) (A3c)
VN 2  VAN

Vd'p (VA+-2(WAtWB)) (A3d)
2Ap

t* =1 (2ARA-WB_ (A3e)

2 VAp
I =3 ~~(-WOA+2w B- ) (Af

From Shen (1982)
du(Aa

- D -" sine cos6+ 2v' cos. (A4a)
VN=D dX2

VAP D sin20+ r2v' sina . (A4b)

Substituting these into eq A3a-f, we obtain

(1-E) (--- sin cos+/2v'cosa) (A5a)VN 2 d 2 V

V ='6(5D-' sin26+52 vsina--2(wA+O) )  (A5b)
Ap 6 dx2 2

2* +C:) (-D-!u sinO cosO+12v'cosa) (A5c)BN 2 dx 2

V-* I (D--sin 2O V sin a+ -2 (t+B)) (A5d)
Bp 6 dX2

* * 1 du 1
W A = = 3 d- ( + 2sin26) + 2/2(vYD) sina (A5e)

In the process of averaging the following series expansions were used:

X3  X5  X7
sinh - -. 3 +5 T!_7! +''-

-1- x 2 _x 4  X6

cosx= I-T + 4! 6! + '

where x = a 2 = 7r /2 - R sin 26 and R = D(du/dx 2)/2/2 v. The series were trun-

cated after the R 2 term.
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APPENDIX B: AN ALTERNATIVE METHOD OF FINDING w'

We have defined the post-collision angular velocity of a disk to be

c* = 1 ± W'. (BI)

Using eq A3e, we can define a "second generation" post-collision angular
velocity to be

** 1 -w * 2 VAp (B2)CA = 2° o " (2

Substituting eq BI into eq B2, and subtracting the mean component, Q,
yields a "second generation" fluctuating angular velocity, which we then square

A,, = (Q - + - L 2w 'AcB11 (B3)

If we begin with w= w = 0 (first generation), we find wA to be a function
of (1+ VA ID), hence each succeeding generation of w' is also a function of
(S+ VA /1), which can thus be moved outside the brackets. This quantity is a
function of the point of collision denoted by 6 and the direction of v' denoted by
a and is averaged by integration over the range 0 and a.

We iterate eq B3 over all previous values of W' using the following expres-
sion

Ap 2
n-1 n-i f'(Q+ --5 da d

n L I I-oJ' 2 uj±j' ffda dO (B4)
n 1i=0 J=O

where wA, =w0 =Ofori= =O.

As n grols large (- 50) the bracketed expression approaches unity. Evaluat-
ing the integral expression yields

W 2 = 0. 125 (-du 2 vp2 (B5)

which is iuentlcal to the result obtained by the method outlined previously in
eq 29.
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